
Rules, types and the transcendence of second

order logic

Paolo Pistone

As soon as formulas of the form "exists X A" or "Nat->. . . " are involved,
incompleteness tells us that logical consequence transcends provability within a
given formal system. This is due to the comprehension rule (i.e. the existence
introduction rule) which violates the subformula property and whose treatment,
if we follow Quine's well known account, demands for reference to a set-theoretic
universe.

The aim of this talk is to argue for a di�erent understanding of second order
logic: building on some ideas by Prawitz, Martin-Löf and Girard, it is argued
that a better grasp of the functional content of the comprehension rule comes
from the consideration of inference rules independently of logical correctness;
the situation is analogous to that of computation, whose proper functional de-
scription imposes to consider non terminating algorithms. A general equational
theory of (possibly incorrect) inference is thus presented.

Suppose that a lambda term t represents a certain recursive function f, how
can we know if the function f is actually a total function? Since it is impossible
to verify that the function is de�ned for every argument, as this would require
to perform in�nite computations, one is forced to look for a (�nite) argument,
i.e. a proof. From the standpoint of the Curry-Howard correspondence between
proofs and typed lambda terms, this amounts to trying to type t as Nat->Nat: in
other words, logical typing replaces in�nite veri�cations with a �nite operation.
The goal will be to characterize this �nite (i.e. recursive) aspect of typing.

It is well known that the typing conditions for a lambda-term can be ex-
pressed, in all generality, through a system of recursive type equations. It will
be shown that the types, if any, which solve such systems can be characterized
by a set of introduction/elimination rules; that is to say, one no more focuses
on what one can prove by means of a certain package of rules (provided by a
formal system), but rather on what the rules needed to prove a certain formula
must be like, at the level of their functional description. In this context, we can
interpret unrestricted comprehension roughly as stating that every set of intro-
duction/elimination rules (satisfying basic constraints) de�nes a logical type,
or that any type equation system has a solution. How is it possible, then, to
discern the �good� types from the paradoxical ones which will naturally arise in
such a �naïve� type system?

Matters as to the legitimacy of comprehension instances are translated into
the question whether logical harmony (i.e. cut-elimination) obtains between

1



a set of rules. By the way, the justi�cation of logical rules by harmony runs
inexorably into a form of epistemic (�pragmatic�, in Dummett's terminology)
circularity: instances of the comprehension axiom of set-theory must indeed be
used to justify the harmony of the comprehension rule. Even worse, since, by
applying the comprehension rule, every proof can be trivially transformed into
a cut-free one, the entire matter of justifying comprehension by harmony looks
like an empty shell. That's why insisting on the functional content of type in-
ference seems more promising than focusing on the endless purpose of justifying
rules (by set-theory, at last): accordingly, the notion of proof arising from the
ideas above embodies the problematic (i.e., inde�nitely questionable) condition
of second order reasoning. It is conjectured that, by admitting unrestricted
comprehension over types, the thesis that logical consequence transcends (prob-
lematic) provability can be challenged: for instance, can such a �naïve� type
system, though globally inconsistent, contain enough consistent subsystems to
type all total recursive functions?

2


