Complexity Analysis
in Presence of Control Operators
and Higher-Order Functions.

Ugo Dal Lago

Abstract

A polarized version of Girard, Sce-
drov and Scott’s Bounded Linear Logic
is introduced and its normalization
properties studied. Following Lau-
rent [7], the logic naturally gives rise
to a type system for the Au-calculus,
whose derivations reveal bounds on the
time complexity of the underlying term.

1 Introduction

Among non-functional properties of programs,
bounds on the amount of resources (like com-
putation time and space) programs need when
executed are particularly significant. The prob-
lem of deriving such bounds is indeed crucial in
safety-critical systems, but is undecidable when
considering non-trivial programming languages.

A different approach consists in analysing
the abstract complexity of programs. E.g., one
can take the number of instructions executed
by the program as a measure of its execution
time. One advantage of this analysis is the in-
dependence from the specific hardware platform
executing the program, which only needs to be
analysed once. Properties of programs written
in higher-order functional languages are for var-
ious reasons well-suited to be verified by way
of type systems. This includes not only safety
properties (e.g. well-typed programs do not go
wrong), but more complex ones, including re-
source bounds [6, [1l 2].

In this work, we delineate a methodology
for complexity analysis of higher-order programs
with control operators. The latter are con-
structs which are available in most concrete
functional programming languages (including
Scheme and OCaml), and allow control to flow
in non-standard ways. We introduce a type sys-
tem for de Groote’s Ap-calculus [4] derived from
Bounded Linear Logic [5]. We prove it to be
sound: typable programs can indeed be reduced
in a number of steps lesser or equal to a (polyno-
mial) bound which can be read from the under-

Giulio Pellitta

lying type derivation. A similar result can be
given when the cost model is the one induced
by an abstract machine. To the authors’ knowl-
edge, this is the first example of a complexity
analysis methodology coping well not only with
higher-order functions, but also with control op-
erators.

References

[1] P. Baillot and K. Terui. Light types for
polynomial time computation in lambda-
calculus. Information and Computation,
207(1):41-62, 20009.

[2] U. Dal Lago and M. Gaboardi. Linear
dependent types and relative completeness.
Logical Methods in Computer Science, 8(4),
2012.

[3] U. Dal Lago and G. Pellitta. Complexity
analysis in presence of control operators and
higher-order functions. In LPAR-19, Pro-
ceedings, pages 258-273. Springer, 2013.

[4] P. de Groote. On the relation between
the Ap-calculus and the syntactic theory
of sequential control. In Logic Program-
ming and Automated Reasoning, pages 31—
43. Springer, 1994.

[5] J.-Y. Girard, A. Scedrov, and P. Scott.
Bounded linear logic: a modular approach
to polynomial-time computability. Theoret-
ical Computer Science, 97(1):1-66, 1992.

[6] S. Jost, K. Hammond, H.-W. Loidl, and
M. Hofmann. Static determination of quan-
titative resource usage for higher-order pro-
grams. In POPL, Madrid, Spain, 2010. ACM

Press.
[7] O. Laurent. Polarized proof-nets and Ap-
calculus. Theoretical Computer Science,

290(1):161-188, 2003.

	Introduction

