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In classical physics, every system can be described by specifying its ac-
tual properties. Mathematically, this happens by representing the state of
the system by a point (p, q) in the corresponding phase space Γ and, its
properties by subsets of Γ. Consequently, the propositional structure asso-
ciated with the properties of a classical system follows the rules of classical
logic. In the orthodox formulation of quantum mechanics, a pure state of a
system is represented by a ray in a Hilbert space H and its physical prop-
erties by closed subspaces of H which, with adequate definitions of meet
and join operations, give rise to an orthomodular lattice. This lattice, de-
noted by L(H), is called the Hilbert lattice associated to H and motivates
the standard quantum logic introduced in the thirties by Birkhoff and von
Neumann [1].

In the last years, several approaches using topos theory, have been used
to search for an adequate and rigorous language for quantum systems [2, 3,
4, 5]. In these approaches, the quantum analogue of classical phase space is
captured by the notion of frame i.e. an intuitionistic structure.

In this framework, we provide a representation of physical properties as
modal operators in a Heyting structure. This representation allows us to
analyze the classical and quantum aspects of properties in terms of logical
consequences.
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