Interpreting Łukasiewicz logic into Intuitionistic logic.

Vincenzo Marra, Daniel McNeill, Andrea Pedrini

Key words: Lukasiewicz logic, Intuitionistic logic, MV-algebra, Heyting algebra, Consequence relation, Polyhedral geometry.

Lukasiewicz (infinite-valued propositional) logic – denoted L – and Intuitionistic (propositional) logic – denoted Int – are two of the oldest and most well studied systems of non-classical logic. See [2] and [1], respectively, for background. The two logics were conceived with entirely different motivations, and have very different formal properties. Nonetheless, we prove the following.

Notation. We fix countable sets of propositional variables X and Y, and write $FORM_X$ for the set of formulæ of L and $FORM_Y$ for the set of formulæ of Int. We further denote by \vdash_{L} and \vdash_{Int} the syntactic consequence relations of L and Int, respectively.

Theorem. There exists a deductively closed theory Θ_{L} in Int, and a function $\mathscr{T} \colon \mathsf{FORM}_X \to \mathsf{FORM}_Y$, such that, for each $\alpha \in \mathsf{FORM}_X$, the following holds.

$$\vdash_{\mathsf{L}} \alpha \quad \text{if, and only if,} \quad \Theta_{\mathsf{L}} \vdash_{\mathsf{Int}} \mathscr{T}(\alpha)$$
 (1)

Remark. The function \mathscr{T} is essentially surjective in the following sense. Given $\beta_1 \in \text{FORM}_Y$, there exists $\beta_2 \in \text{FORM}_Y$ such that β_1 and β_2 are logically equivalent modulo Θ_{L} (i.e. $\Theta_{\mathsf{L}} \vdash_{\mathsf{Int}} \beta_1 \leftrightarrow \beta_2$), and $\mathscr{T}(\alpha) = \beta_2$ for some $\alpha \in \text{FORM}_X$.

The proof of the theorem rests on a remarkable property of the lattice \mathcal{L}_{fa} of finitely axiomatisable theories in L:

Lemma. The (distributive) lattice \mathcal{L}_{fa} is a (countable)Heyting algebra.

The set of maximally consistent theories in L carries a natural topology that makes it homeomorphic to $[0,1]^{\omega}$. The lattice \mathscr{L}_{fa} is anti-isomorphic to the lattice of (cylindrified) rational polyhedra in $[0,1]^{\omega}$. This is proved by passing to Lindenbaum-Tarski algebras, and applying the geometric duality theory of Chang's MV-algebras, the algebraic counterparts of L. Algebraically, the lemma asserts the remarkable fact that the lattice of principal ideals of \mathscr{F}_L , the free MV-algebra on ω generators, is a countable Heyting algebra. This result is part of a more general investigation of the topology of prime spectral spaces of MV-algebras and related structures; see Andrea Pedrini's submitted abstract. It follows that there is an onto homomorphism of Heyting algebras

$$q \colon \mathscr{F}_{\mathsf{Int}} \twoheadrightarrow \mathscr{L}_{\mathsf{fa}},$$

where $\mathscr{F}_{\mathsf{Int}}$ is the free Heyting algebra on ω generators. Now, if \top is the top element of $\mathscr{L}_{\mathsf{fa}}$, the filter $q^{-1}(\top)$ corresponds to a theory Θ_{L} in Int , and the map q can be used to define the translation map \mathscr{T} , leading to a proof of the theorem.

At the time of writing, the theorem above is a purely existential result. In further work, we plan to investigate the properties of \mathcal{T} and Θ_{L} more closely. Some obvious questions to be addressed include axiomatisability of Θ_{L} , and computability of \mathcal{T} .

Abstract submitted to AILA2014 on Tuesday 4th March, 2014

¹Presenting author. Dipartimento di Scienze Teoriche e Applicate, Università degli Studi dell'Insubria, Via Mazzini, 5, 21100 Varese, Italy. E-mail danmcne@gmail.com

References

- $[1] \ \ A. \ Chagrov \ and \ M. \ Zakharyaschev. \ \textit{Modal logic}, \ volume \ 35 \ of \ \textit{Oxford Logic Guides}. \ The \ Clarendon \ Press \ Oxford \ University$
- Press, New York, 1997. Oxford Science Publications.

 [2] R. L. O. Cignoli, I. M. L. D'Ottaviano, and D. Mundici. Algebraic foundations of many-valued reasoning, volume 7 of Trends in Logic—Studia Logica Library. Kluwer Academic Publishers, Dordrecht, 2000.